If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-80=0
a = 30; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·30·(-80)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{6}}{2*30}=\frac{0-40\sqrt{6}}{60} =-\frac{40\sqrt{6}}{60} =-\frac{2\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{6}}{2*30}=\frac{0+40\sqrt{6}}{60} =\frac{40\sqrt{6}}{60} =\frac{2\sqrt{6}}{3} $
| 2=-3r+13 | | b-21=19 | | 5=m-8 | | 47=2x+2x+3 | | h+9.8=13 | | 20=2y-8 | | y=128(.5)^5 | | 4*3^2x-5=16 | | 1/2(-6r+8)=-6r+13 | | y=1(2)^24 | | 9x-32=2+5x | | 40=60+20=x | | 36=h-5 | | 87=15+a | | -10x15=17-6x | | 2-9x-1/3=1 | | 45-2x=3x+5 | | X^2+3x-1/9=0 | | y+y=21 | | y=100(1.04)^12 | | 2x=3+2x2 | | 25=x+8 | | 7(w-2)=-35 | | 0.05(10m-9)=0.25(4m-3) | | 7.3h-5.18=-51.9 | | 22-3y-20+10y=144 | | -2x2+2x-3=0 | | ×-y=7.5 | | v=π(4•4)15 | | 25x+45=16-13x | | 11-6x=31-10x | | 5(2n+3)=8(4n+3)+4 |